Numerical Weather Prediction Models

NWP Model Formulation

- 1. Different types of model
 - 2. Model Characteristics
- 3. General strengths and weaknesses of NWP models

Types of atmospheric model

- Climatological
 - Global Climate Models (GCM's)
 - Hindcasts and forecasts
 - Climate change global warming
 - Non operational weather forecasting models

from 1960–1990 to 2070–2100 from HadCM3 IS92a

Hadisy Centre for Climate Prediction and Research, The Met. Office

Types of atmospheric model

- Long-term and seasonal
 - Coupled ocean-atmosphere models
 - Aims to infer climate from indicators such as Sea Surface Temperature (El Nino)
 - Forecasts issued by ECMWF every month

CEOMWF

Forecast issue date: 15/09/2008

Types of atmospheric model

- Global NWP models
 - Operational forecasting models
 - Run twice to four times daily
 - Generally short to medium range (typically T+144)
 - Global coverage

Init : Wed,040CT2006 06Z

Valid: Wed,040CT2006 12Z

Types of atmospheric model

- Limited Area Models (mesoscale/LAMs)
 - Add local detail to broad picture from global model
 - Take boundary conditions from globals
 - Higher resolution, so better representation of small scale events
 - Shorter forecast time (typically T+48)

Types of atmospheric model

- Nowcasting
 - Aim to give best forecast for time period of 0-6 hours ahead
 - Blend of model and observational data
 - UK Met Office uses the NIMROD system
- Specific applications
 - Atmospheric Dispersion
 - Air quality
 - Lee-wave forecasting models

Models

ECMWF

- Horizontal resolution of T799 (16km), 91 vertical levels
- 10 days ahead
- 4-D VAR
- EPS Ensemble Prediction System
- T399 (50km), 62 levels

NCEP

- National Center for Environmental Prediction (USA)
- Known as GFS (Global Forecasting System) model
- AVN/MRF combined

UK Met Office

- Global model
- Horizontal resolution of 25 km and 70 vertical levels
- 4 times daily
- Run out to T+144
- 4DVar

UK Met Office

- Limited Area Models
- North Atlantic European (NAE)
 - 12 km horizontal resolution, 70 vertical levels
 - Stretches from Newfoundland to Eastern Mediterranean and Northern Scandinavia to North Africa
 - Four times daily to T+48

UK Met Office

- Africa LAM
- 12 km horizontal resolution, 38 vertical levels
- Available via password protected website
 <u>http://www.metoffice.gov.uk/weather/africa/lam/</u>
- Username is afr_nms and password is uk_alam
- Intermittent data assimilation
- Run to T+48

Strengths & Weaknesses of NWP models

Strengths & Weaknesses

- There are generic problems common to most NWP
- If we know about these we can account for them in our initial verification
- Most problems are related to resolution

NWP Strengths

- Convection
 - General area of convection is well captured
- Extra-tropical latitudes
 - Model is much better here
 - Frontal systems are well represented
 - Orographically enhanced rainfall better than Global Model

Generic Problems

- Inaccurate Initial Conditions
 - Lack of data
 - Imperfect data assimilation
- Resolution
 - Horizontal resolution may cause small scale features to be missed
 - Vertical profile may not capture full detail e.g. inversions, localised temperature advection

Generic Problems

• Orography

- Generally flattened less steep and less high
- Some features completely omitted
- Orography in LAMs is better than in global models but still not perfect

Generic Problems

- Lateral Boundary Conditions
 - Only a problem for LAM's
 - Spin up problems when transposing low resolution data onto a high resolution grid
 - Potential problems at edge of domain

NWP Weaknesses

- Tropical Convection
 - Representation of diurnal cycle is poor
 - Convection initiated too early and is too widespread
 - 0600-1200 ppn accumulation frames contain much spurious ppn but can indicate areas of activity
 - Fails to develop large scale, long-lived mesoscale convective systems

NWP convection switched on....

NWP convection switched off....

Questions & Answers